
Libraries.doc

Thomas Neumann

Libraries.doc ii

COLLABORATORS

TITLE :

Libraries.doc

ACTION NAME DATE SIGNATURE

WRITTEN BY Thomas Neumann January 18, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Libraries.doc iii

Contents

1 Libraries.doc 1

1.1 main . 1

Libraries.doc 1 / 41

Chapter 1

Libraries.doc

1.1 main

* *
* How to make External Libraries to AccessiblePlayer *
* *
* Update 27-12-1995 *
* *

INTRODUCTION

All the external players, noteplayers and agents are built like a library.
The players should be stored in the LIBS:APlayer/ directory, the
noteplayers in the LIBS:APlayer/NotePlayer/ directory and the agents in the
LIBS:APlayer/Agents/ directory. There are only one function in the library,
and this is a very simple one. The only thing it should do, is to return a
pointer in A0 to a taglist.

A taglist is a list which contains some parameters, that will indicate what
this player supports. There are a lots of tags, where the data field should
point to a function, which has to do something e.g. a test function. All
your functions will be called with a pointer to the AccessiblePlayer global
data area in A5 (see below).

Remember when you code the different functions, you have to save all
registers, also D0/D1/A0/A1.

Note also that the library name (without the ap-/an-/aa- and the -.library
extension) must have a maximum length of 26 characters!!!!

If you want to load a config file or do something else, the first time the
library is opened, you can make your code in the library init routine, just
remember to free all allocations in the expunge routine.

Players:

Libraries.doc 2 / 41

A player is a program who can determine a certain module format and play
it. It can use a NotePlayer to play the sounds.

NotePlayers:

A noteplayer is a program which feed the hardware with the sounds. It can
mix the samples to get more channels, but it’s not necessary. If a player
uses a noteplayer, it will fill out a noteplayer structure (See the include
file for more information). The noteplayer will then read these information
and feed the hardware. Here is a little example: If the player want to
change the volume, it sets the volume in the volume field in the noteplayer
structure. The player will also set the volume bit in the flag field. The
noteplayer will then know it has to change the volume. Remember that the
noteplayer is responsible to clear the flag field after reading.

Agents:

Agents is a program which can be started when the user select different
things. All agents will get a pointer to some data. The data is different
for each agent type.

TAGS

Your taglist can contain the following tags. Note that you may NOT change
the taglist, except the normal tags (TAG_SKIP, TAG_END etc.). If you want
some changes, do it in another way. Because of this, I have made some tags
pointing to a function instead of a pointer to some data. A good thing is
to make your load, test and free memory routines independent of your other
routines. If the user has double buffering turned on, your test, load and
free code will be called while your play function still plays the previous
module.

GLOBAL TAGS

APT_RequestVersion (UWORD)

This tag can be used, if the library uses some global functions which are
implemented in a later version of AccessiblePlayer. The ti_Data field
should contain the first version number of AccessiblePlayer where the new
functions are implemented. The library will not be used, if it needs a
newer version of AccessiblePlayer than the one which is currently in use.

APT_PlayerName/APT_NotePlayerName/APT_AgentName (APTR)
--
ti_Data should contain a pointer to the Player/NotePlayer/Agent name, like
’Protracker’. The string can max be 30 characters long. This tag must
exist.

APT_Description (APTR)

ti_Data should contain a pointer to a description of the
Player/NotePlayer/Agent. You can separate a new line with the ASCII code 10
(CR). The following rule should be used when you make the description:

Libraries.doc 3 / 41

1. The first line should contain the name of the programmer of the original
Player/NotePlayer/Agent.

2. The second line should contain the name of the person who adapted this
player. If you have made the player, skip this line.

3. The third line should be empty (It looks nicer that way)

4. Line 4-10 should contain a description of what the
Player/NotePlayer/Agent can support and what it does.

Example:
+--------------------------------+

Line 1 |Original player by Lars Hamre. |
Line 2 |Adapted & optimized by Tax. |
Line 3 (Empty) | |
Line 4 |It can handle modules with |
. |either 64 or 100 patterns. |
. | |
. |This player uses a NotePlayer. |
. | |
. | |
Line 10 | |

+--------------------------------+

>>>>>>>>>> Tags in release 3 or higher (released as version 1.21) <<<<<<<<<

APT_CfgWindow (APTR)

This tag should point to a pointer that points to a config window
structure. This will be used when the user presses the config button and
your window is already open. APlayer needs the window handler from the
structure to put your window to the front.

>>>>>>>>>> Tags in release 4 or higher (released as version 1.30) <<<<<<<<<

APT_NewConfig (APTR)

You should only support this tag if you have a config window in your
library. The ti_Data field should point to two longwords. In the first
longword you should store a pointer to your function. In the second
longword there will be stored the global data pointer before your function
will be started. Your function will be called when the user selects Config
in the player preference window. You have to use the global data function
to make your window, so it will get a standard. See in a later section
about the standard and how to make your window.

>>>>>>>>>> Tags in release 5 or higher (released as version 1.40) <<<<<<<<<

APT_Show (APTR)

Use only this tag if you have a window that is NOT a config window. This
tag should point to two longwords. In the first longword you should have a
pointer to your function. In the second longword there will be stored the
global data pointer before your function will be started. Your function
will be called when the user selects Show in the player preference window.

Libraries.doc 4 / 41

You can use the global data function to make your window if you want.

APT_ShowWindow (APTR)

This tag should point to a pointer that points to a show window
structure. This will be used when the user presses the show button and
your window is already open. APlayer needs the window handler from the
structure to put your window to the front.

PLAYER/NOTEPLAYER TAGS

(BOOL) APT_StartIRQ (FPTR)

You should only use this tag if you want to start your own IRQ. If you want
this you should not use the APT_Interrupt tag. If you use this tag in a
player, you will in A1 get the address returned by your APT_LoadModule
function if supported, otherwise it will be the start address of the
module. You have to return a boolean value in D1 that indicates a success
or failure. True(1) means success and false(0) means failure. You don’t
have to return a value if you use this in a NotePlayer.

APT_StopIRQ (FPTR)

In this function you have to stop your IRQ routine you have set up in your
APT_StartIRQ function. If you use this tag in a player, you will in A1 get
the address returned by your APT_LoadModule function if supported,
otherwise it will be the start address of the module.

APT_Volume (BOOL)

This boolean tag indicates that your player/noteplayer can support volume
changing.

APT_VolumeFunc (FPTR)

In some players/noteplayers you need to change the volume with a function,
because you can’t get the global volume value within the interrupt routine.
You can then use this function to set the volume. It will be called every
time the user change the volume slider or a new module is loaded. If you
use this tag, you will not be able to support fade. If you use this tag in
a player, you will in A1 get the address returned by your APT_LoadModule
function if supported, otherwise it will be the start address of the
module.

APT_ChangeChannel (FPTR)

This function will be called when the user selects one of the channel
on/off switches. It should turn the channel on or off, depending on the
given state. In D1 (UBYTE) is the channel you have to change (0-3) and D2
(BOOL8) the state. True means on and false means off. If you use this tag
in a player, you will in A1 get the address returned by your APT_LoadModule
function if supported, otherwise it will be the start address of the
module.

APT_RealtimePlay (BOOL)

Libraries.doc 5 / 41

Use this tag if you also support that the user can play a sampling while
your player plays the module. If you set this to true, AccessiblePlayer
will call your APT_NewPlaySample function when one or more channels are
turned off.

>>>>>>>>>> Tags in release 4 or higher (released as version 1.30) <<<<<<<<<

APT_NewPlaySample (FPTR)

This function will be called when the user plays on the keyboard. You
should play the selected sample. In D1 (WORD) you will get the period to
play. In D2 (UBYTE) you will get the channel you have to play in (0-31). In
A2 you will get a pointer to a Sample Info structure. Note that there are a
global function in AccessiblePlayer that can help you to play the sample.
If you use this tag in a player, you will in A1 get the address returned by
your APT_LoadModule function if supported, otherwise it will be the start
address of the module.

>>>>>>>>>> Tags in release 6 or higher (released as version 2.00) <<<<<<<<<

APT_ChanSignal (APTR)

If you make a player and want to be signaled when a sample loops, you can
use this tag. It is the same as using an audio interrupt. It has to point
to 2 longwords. The first longword is a pointer to your player task (use a
FindTask() call). The second longword is the signal bit number (if bit 2,
store 1<<2 here). If you make a noteplayer, you have to check to see if the
task longword is null and if it’s, don’t do anything. If it’s non- null,
you have to send the signal to the task when you looping the sampling. You
also have to send a signal when you start a new sampling. Notice that, you
should only send a signal in your channel 0 routine.

PLAYER TAGS

(ULONG) APT_EarlyCheck (FPTR)

If you use this tag, AccessiblePlayer will call the function via ti_Data
before it has loaded the module. You can use this, if you don’t need the
whole module in memory before testing. Notice that this tag are mutual
excluded with APT_Check. Your testing routine has to return a success flag
in D0. 0 means that it can’t recognise, 1 if everything went ok or 2 if
there was an error. This tag or APT_Check must exist. This tag will also
allow crunched files.

(ULONG) APT_Check (FPTR)

If you use this tag, AccessiblePlayer will call the function via ti_Data
after it has loaded the module into memory. Only use this tag if you can’t
test before the whole file is in memory. Notice that this tag is mutual
excluded with APT_EarlyCheck. You will get the start address in A1. Your
testing routine has to return a success flag in D0. 0 means it can’t
recognise, 1 if everything went ok or 2 if there was an error. This tag or
APT_EarlyCheck must exist.

Libraries.doc 6 / 41

(APTR) APT_LoadModule (FPTR)

You should only use this tag if you want to make your own loader routine.
You can only use this tag if you have the APT_EarlyCheck tag. If you don’t
have this tag, AccessiblePlayer will load the whole module into memory. The
fileposition will always be zero when your function is called. Your
function has to return an address in D0 if everything went ok, otherwise
return 0 if some kind of DOS error occured, 1 for out of memory or 2 if
another error occured. If you supply the return value 2, you must have the
APT_GetError tag. You must have the APT_FreeModule tag if you use this tag.

APT_FreeModule (FPTR)

You must only use this tag if you use the APT_LoadModule tag. In this
function you should free all memory you have allocated in the
APT_LoadModule function. You will get the address returned by your
APT_LoadModule function in A1. Note that this function should support a
null pointer, which means do nothing.

(BOOL) APT_ExtLoad (FPTR)

Use this tag if you want to load more files than the current selected
module. In A1 you will get the address returned by your APT_LoadModule
function if supported, otherwise it will be the start address of the
module. You have to return a success boolean in D1, true means that
everything went ok and false means an error. You must have the APT_ExtFree
and the APT_GetError tags if you use this tag.

APT_ExtFree (FPTR)

In this function you have to free all files loaded with the APT_ExtLoad
function. In A1 you will get the address returned by your APT_LoadModule
function if supported, otherwise it will be the start address of the
module.

(APTR) APT_GetError (FPTR)

You only need this tag, if you supply an error number of 2 (another error)
in your APT_LoadModule function or you have the APT_ExtLoad tag. You have
to return a pointer in D0 to a null terminated error text.

(BOOL) APT_InitPlayer (FPTR)

This function should initialize your player routine. You have to allocate
the audio channels in this function. It will only be called when a new
module has been loaded into memory. In A1 you will get the address returned
by your APT_LoadModule function if supported, otherwise it will be the
start address of the module. You have to return a boolean value in D1 that
indicates a success or failure. True means success and false means failure.
This tag must exist.

APT_EndPlayer (FPTR)

This function will be called when a module is freed from memory. You should
do some cleanup here, like free the audio channels. You will in A1 get the
address returned by your APT_LoadModule function if supported, otherwise it
will be the start address of the module. This tag must exist.

Libraries.doc 7 / 41

APT_InitSound (FPTR)

Here in this function you should initialize the module so it will start
over with the tune number stored in APG_Tune in the AccessblePlayers global
data area. In A1 you will get the address returned by your APT_LoadModule
function if supported, otherwise it will be the start address of the
module. This tag must exist.

APT_EndSound (FPTR)

This function should only clear the audio channels (if not using
noteplayer) and reset variables if you have some. In A1 you will get the
address returned by your APT_LoadModule function if supported, otherwise it
will be the start address of the module. This tag must exist.

APT_Interrupt (FPTR)

This function should be your interrupt routine. AccessiblePlayers interrupt
routine will generate a software interrupt pointing to your routine. If you
do not support this tag, you must have APT_StartIRQ and APT_StopIRQ
instead. In A1 you will get the address returned by your APT_LoadModule
function if supported, otherwise it will be the start address of the
module. D1 (BOOL) will indicate that your routine was called from VBlank or
CIA. True means VBlank and false means CIA.

(APTR) APT_ModuleName (FPTR)

This function should return a pointer to the name of the module in A0. Do
only support this tag if you can find the name. In A1 you will get the
address returned by your APT_LoadModule function if supported, otherwise it
will be the start address of the module.

(APTR) APT_Author (FPTR)

This function should return a pointer to the name of the author in D0 or
NULL if you can’t find it. In A1 you will get the address returned by your
APT_LoadModule function if supported, otherwise it will be the start
address of the module.

(APTR) APT_SubSong (FPTR)

This function should return a pointer to two words in A0. The first word
should be the max number of tunes in the module. The second should be the
default start tune number to play at start, where the first is 0. You will
in A1 get the address returned by your APT_LoadModule function if
supported, otherwise it will be the start address of the module.

APT_Pause (BOOL)

This boolean tag indicates that your player can support pause.

(WORD) APT_GetMaxPattern (FPTR)

This function should return the max number of patterns which are used in
the current module. The result should be stored in D1. In A1 you will get
the address returned by your APT_LoadModule function if supported,

Libraries.doc 8 / 41

otherwise it will be the start address of the module.

(WORD) APT_GetMaxSample (FPTR)

This function should return the max number of samples used in the current
module or the supported number which the player can handle. The result
should be stored in D1. In A1 you will get the address returned by your
APT_LoadModule function if supported, otherwise it will be the start
address of the module.

(WORD) APT_GetSongLength (FPTR)

You should return the length of the current tune in D1 in this function. In
A1 you will get the address returned by your APT_LoadModule function if
supported, otherwise it will be the start address of the module.

(WORD) APT_GetSongPos (FPTR)

This function should return the current song position in D1. The result
should be between 0 and the max length-1 (0-x). In A1 you will get the
address returned by your APT_LoadModule function if supported, otherwise it
will be the start address of the module.

(WORD) APT_Rewind (FPTR)

If you support that the user can rewind the actual tune, you have to use
this tag. The ti_Data field should point to a function that rewind the tune
one "pattern". Note that you should not rewind if the postion is zero. In
A1 you will get the address returned by your APT_LoadModule function if
supported, otherwise it will be the start address of the module. As result,
you have to return the new position in D1.

(WORD) APT_Forward (FPTR)

If you support that the user can forward the actual tune, you have to use
this tag. The ti_Data field should point to a function that count the tune
one "pattern" forward. You have to make a wrap around, that means when you
get to the end, you have to start over again with the counter. In A1 you
will get the address returned by your APT_LoadModule function if supported,
otherwise it will be the start address of the module. As result, you have
to return the new position in D1.

(BOOL) APT_TestNextLine (FPTR)

This function has to test if the player has moved to the next pattern line
and return true or false in D1 depending if it has or not. This function is
only used in the fade routine in AccessiblePlayer, so if you do not support
volume, you should not support this. In A1 you will get the address
returned by your APT_LoadModule function if supported, otherwise it will be
the start address of the module.

APT_GetSampleInfo (FPTR)

This function should fill out the a SampleInfo structure. In A1 you will
get the address returned by your APT_LoadModule function if supported,
otherwise it will be the start address of the module. In A2 you will get
the start address of the structure you have to fill. In D1 (WORD) you will

Libraries.doc 9 / 41

get the sample number AccessiblePlayer want information about. The number
is between 0 and the max number of samples-1 (0-x). See the include file
for more information about the structure.

APT_CallBack (FPTR)

This function will only be called if you send a CallBack message to
AccessiblePlayer. This can be used if you want the main program to do
something you can’t do in an interrupt. Note that, if the user is in a
filerequester or the program is about to load, this function will not be
called before the program is finished with the job. If you want a task to
run on its own, you have to make a new task. In A1 you will get the address
returned by your APT_LoadModule function if supported, otherwise it will be
the start address of the module.

>>>>>>>>>> Tags in release 2 or higher (released as version 1.1) <<<<<<<<<<

APT_Flags (LONG)

This tag is used if you want to say some special things to APlayer. You can
use the flags defined below:

AF_AnyMem = Set this bit if the module can be loaded
into any memory. This bit will only be
used if you not have your own loader
routine. Do not set this bit if you use
noteplayers.

AF_UseAudio = If you set this bit, then the user can’t
override the allocation of the audio
channels.

>>>>>>>>> Flags in release 3 or higher (released as version 1.21) <<<<<<<<<

AF_SongEnd = Do only set this bit if you support
SongEnd and NOT position in your player.

>>>>>>>>> Flags in release 6 or higher (released as version 2.00) <<<<<<<<<

AF_Sample = If your player is a sample player, you
have to set this flag. That means, if the
user don’t have the loop gadget on and
when APlayer receives a NextMod message
from your player, it will stop your player
before it loads the next module.

>>>>>>>>>> Tags in release 4 or higher (released as version 1.30) <<<<<<<<<

(UBYTE) APT_UsedChannels (FPTR)

This function should return the number of channels used in D1. You will in
A1 get the address returned by your APT_LoadModule function if supported,
otherwise it will be the start address of the module.

(UBYTE) APT_SamplesType (FPTR)

This function should return the type of samples in the module in D1. If you

Libraries.doc 10 / 41

don’t have this tag, signed will be taken as default. You will in A1 get
the address returned by your APT_LoadModule function if supported,
otherwise it will be the start address of the module.

(APTR) APT_NotePlayer (FPTR)

If your player uses a noteplayer, you have to use this tag. It should point
to a function that returns a pointer in A0 to a table with a length of max
12 bytes. In A1 you will get the address returned by your APT_LoadModule
function if supported, otherwise it will be the start address of the
module. The first word in the table is a flag word. See below for futher
description. The second byte indicates how many channels you have to use to
play the current module. The rest of the table is a little table of which
sample bit length this player can give the noteplayer. It ends with a zero.
A little ex. of a table: 0,4,8,0. It only uses 4 channels and there is only
8 bit samples. You can set these flags:

ANF_HardwareVolume = Set this bit if your player only have 4
volumes and more channels. This is like
Oktalyzer, Octamed etc.

ANF_Signed = Set this bit if the samples can be signed.

ANF_Unsigned = Set this bit if the samples can be
unsigned.

ANF_Clock = If your player have another clock
frequency to the periods, you have to set
this bit.

(APTR) APT_DefaultPlayerInfo (FPTR)

If your player uses a noteplayer, you have to use this tag. It is the same
as the APT_NotePlayer tag except that the APT_NotePlayer will be used when
APlayer tries to find a noteplayer to use after it has loaded a module.
This tag will be used to get the default information. It will probaly be
the same information except that the maximum channels in this function
should be the max number this player can use and in the APT_NotePlayer tag
the maximum channels should be the number of channels the current module
use.

>>>>>>>>>> Tags in release 2 or higher (released as version 1.1) <<<<<<<<<<

APT_TempoFunc (FPTR)

If you want to have your own tempo change routine, you can use this tag.
Your function will be called every time the user change the tempo. You will
in A1 get the address returned by your APT_LoadModule function if
supported, otherwise it will be the start address of the module. In D1
(WORD) you will get the value the tempo slider is on. This value can be
between -111 to 112.

NOTEPLAYER TAGS

APT_NotePlayerInfo (APTR)

Libraries.doc 11 / 41

This tag should point to a little table with a length of max 12 bytes. The
first word is a flag word. See below for a description of the bits. The
next byte is the max number of channels this noteplayer supports. The rest
is a little table of which sample bit length it supports. It should end
with a zero. Currently there are these bits you can set in the flag word:

ANF_ChipMem = If this bit is set, the noteplayer can
play samples from chip memory.

ANF_FastMem = If this bit is set, the noteplayer can
play samples from fast memory.

ANF_HardwareVolume = Set this bit if your noteplayer only have
4 volumes and you support more channels.
This is like Oktalyzer, Octamed etc.

ANF_Signed = Set this bit if you support signed
samples.

ANF_Unsigned = Set this bit if you support unsigned
samples.

ANF_Clock = If your NotePlayer can handle different
clock frequencies for the periods, set
this bit.

(BOOL) APT_InitNotePlayer (FPTR)

This function should initialize your noteplayer routine. It will only be
called when a new module has been loaded into memory. In D1 (UWORD) you
will get the number of channels the player want. In D2 (UBYTE) you will
get the samples type. You have to return a boolean value in D1 that
indicates a success or failure. True means success and false means failure.

APT_EndNotePlayer (FPTR)

This function will be called when a module is freed from memory. You should
do some cleanup here.

APT_InitNotePlayerSound (FPTR)

In this function you have to initialize the audio hardware. It will be
called the first time a module is loaded or every time the user starts the
module over again. This tag must exist.

APT_EndNotePlayerSound (FPTR)

This function should only clear the audio channels and reset variables if
you have some. This tag must exist.

APT_PlayNote (FPTR)

This function should be your routine that will setup the audio hardware.
AccessiblePlayer will generate a software interrupt pointing to your
routine. It should get the channel information from the global channel
tables and feed the hardware with the information. If it’s a noteplayer

Libraries.doc 12 / 41

that support more than 4 channels, it also have to do the mixing here.

APT_VirtualChangeChannel (FPTR) (NOT USED YET!!!!)
--
Use this if your noteplayer have more than 4 channels and you can turn them
off impendently of each other. In D1 (UBYTE) is the channel you have to
change (0-31) and D2 (BOOL8) the state. True means on and false means off.

AGENT TAGS

APT_AgentType (UWORD)

This tag will tell APlayer which type of Agent this agent is.
Currently there is these types:

AGNT_SampleSaver: These type will be called when the user will save a
sample in the sample window.

AGNT_Scope : If you want to make a scope, use this type. You have to
make your own process which will allocate some signals
(see functions description below). It’s important you
only run at priority -25. The sample start address,
length etc. can you read from the same structure as
noteplayers read from. Notice that the noteplayer flags
is in another structure. This is because the noteplayer
will erase the flags before your scope routine will be
called.

AGNT_FSS : This agent type is private. Do not use it.

APT_AgentHandler (FPTR)

This tag should point to a function which will be called when the user
activate it. How the user activate it is different from type to type. You
will in A1 get a pointer to a data structure. This structure is also
different from agent type to type. See the include file for the different
structures.

>>>>>>>>>> Tags in release 6 or higher (released as version 2.00) <<<<<<<<<

APT_OSVersion (UWORD)

If your agent need an OS version bigger than version 37, you can use this
tag. The ti_data field is the OS version number you need.

Global Data Area

All of your functions will be called with a pointer to AccessiblePlayers
global data area in A5. In this area there is a lot of internal functions
and data that will make it easier for you to implement a new player. In
this section I will describe the functions and data in the AccessiblePlayer
and which parameters they uses. The normal procedure on how to call an
external function, is to use the following code segment:

Libraries.doc 13 / 41

move.l APG_xxxxx(a5),a4
jsr (a4)

Data

APG_FileSize (ULONG)

In this longword the length of the module which is being loaded is stored.

APG_Tune (UWORD)

In this word the current tune number starting with 0 is stored.

APG_MaxVolume (UBYTE)

Right here the maximum volume which your player may use (the volumeslider
position), if you support volume changing, is stored.

APG_Tempo (UBYTE)

The current CIA tempo is stored here. The tempo is the same as in
Protracker, that means it can be between 32 and 255.

>>>>>>>>>> Data in release 4 or higher (released as version 1.30) <<<<<<<<<

APG_IntBase (APTR)

This is the Intuition.library base address.

APG_GfxBase (APTR)

This is the Graphics.library base address.

APG_UtiBase (APTR)

This is the Utility.library base address.

APG_ReqBase (APTR)

This is the Reqtools.library base address.

APG_Clock (ULONG)

In this field the clock will be stored. If a player doesn’t change it, it
will be 3546895 as default.

APG_MixingRate (ULONG)

This is the value that will be printed in the sample info window under the
"used mixing rate" line. You can change this if you do some mixing to the
mixing rate you use. This is probaly done in the NotePlayer.

APG_SampleInfo (APTR)

Libraries.doc 14 / 41

This is a pointer to a linked SampleInfo structure list. If this pointer is
NULL, there isn’t any sample list. The first longword in the list is a
pointer to the next sample info structure. If this pointer is NULL, there
isn’t more structures. The rest is the structure itself. See the include
file for more information.

APG_NullSample (APTR)

This is a pointer to a null word in chip memory.

APG_ChannelInfo (APTR)

This will point to 32 channel info structures. These structures are used in
noteplayers to get the informations about the sample it has to play. There
are one structure for each channel (max 32). See the include file for which
information there is in the structures.

APG_MaxChannels (UWORD)

This will indicate the max number of channels there is in each speaker. If
this is zero, the NotePlayer should calculate this value by itself if it
has to use it, else it just use this value. The most times, this will be
zero, which means the half number of used channels is the max number of
channels in each speaker.

>>>>>>>>>> Data in release 6 or higher (released as version 2.00) <<<<<<<<<

APG_GadBase (APTR)

This is the Gadtools.library base address.

APG_ChannelFlags (APTR)

This is a pointer to a structure where all the flags from the noteplayer
structure are stored. This will probally only be used in scope agents.

APG_ListFont (APTR)

This is a pointer to a TextAttr structure for the font to be used in
listviews. If you have any listviews, you should use the NLV_Font tag which
points to the same pointer as this does.

APG_GeneralFont (APTR)

This is also a pointer to a TextAttr structure, but it points to the font
the user has selected as general font.

APG_LoopFlag (BOOL)

In this 16 bit boolean there will be stored the state of the loop gadget in
the main window. True means loop is on, false is off.

Functions

APG_AllocMem

Libraries.doc 15 / 41

SYNOPSIS
adr = APG_AllocMem (len, requirements)
D0 D0 D1

APTR APG_AllocMem (ULONG, ULONG);

FUNCTION
This function will allocate some memory with the Len number of
bytes. If you use this function, you have to use APG_FreeMem to
free the memory again.

INPUTS
len - number of bytes to allocate.

requirements - the same as with exec’s AllocMem() function.

OUTPUTS
adr - the allocated address or null if the allocation failed.

APG_FreeMem

SYNOPSIS
APG_FreeMem (adr)

A1

void APG_FreeMem (APTR);

FUNCTION
This function will free the memory you have allocated with the
APG_AllocMem function. Do not use this function to free some memory
you haven’t allocated with the above functions. You can pass a NULL
to this function.

INPUTS
adr - the address returned from APG_AllocMem.

APG_GetFilename

SYNOPSIS
APG_GetFilename (buffer)

A0

void APG_GetFilename (APTR);

FUNCTION
This function will copy the filename with path of the module which
are being loaded to the buffer given. This buffer must be at least
be 2*108 bytes long.

INPUTS
buffer - is a pointer to the buffer where you want the filename

Libraries.doc 16 / 41

with path to be placed. The name will be NULL terminated.

APG_FindName

SYNOPSIS
name = APG_FindName (path)
A0 A0

APTR APG_FindName (APTR);

FUNCTION
This function will scan the string Path after a filename and then
return a new pointer in the string where the filename start.

INPUTS
path - a pointer to a NULL terminated string with a path &

filename.

OUTPUTS
name - a new pointer in the string where the filename starts.

APG_CheckLoad

SYNOPSIS
success = APG_CheckLoad (start, len, adr)

D0 D1 D2 A0

LONG APG_CheckLoad (LONG, LONG, APTR);

FUNCTION
You can use this function in your EarlyCheck function. This will
load Len bytes from the Start into your buffer starting at address
Adr. Note that this function will NOT decrunch.

INPUTS
start - this is the start in bytes, where you want to check from.

len - this is the length in bytes you want to read.

adr - this is a pointer to your buffer where you want the readed
data to be stored.

OUTPUTS
success - if this is zero, it means that an error has occured,

otherwise it will contain a nonzero value.

APG_PartialLoad

SYNOPSIS
success = APG_PartialLoad (len, adr)

D0 D1 A0

Libraries.doc 17 / 41

LONG APG_PartialLoad (LONG, APTR);

FUNCTION
You can use this function in your LoadModule function. This will
load Len bytes from the current filepostion into your buffer
starting at address Adr. Note that this function will NOT decrunch.

INPUTS
len - this is the length in bytes you want to read.

adr - this is a pointer to your buffer where you want the read
data to be stored.

OUTPUTS
success - if this is zero, it means that an error has occured,

otherwise it will contain a nonzero value.

APG_Load

SYNOPSIS
adr = APG_Load (name, type)
D0 A0 D1

APTR APG_Load (APTR, BOOL);

FUNCTION
This function will decrunch the file and load it into some
allocated memory. When you want to free the memory allocated by
this function, you must use the APG_FreeMem function.

INPUTS
name - a pointer to the filename you want to load.

type - which memory type you want to allocate. True means chip and
false means public.

OUTPUTS
adr - is the address where the file is loaded or zero for an error.

The allocated memory will automatically be freed if the error
is a load error.

APG_DupOpen

SYNOPSIS
fh = APG_DupOpen ()
D0

BPTR APG_DupOpen (void);

FUNCTION
If you want to use the file AFTER the load function, you have to
call this function. It will open the file again, which will prevent

Libraries.doc 18 / 41

a deletion of the temp file, if the original file was crunched. You
must call DupClose to close the file again.

OUTPUTS
fh - a new filehandler to the file or null for an error.

APG_DupClose

SYNOPSIS
APG_DupClose (fh)

D0

void APG_DupClose (BPTR);

FUNCTION
Use this function to close a file opened with the DupOpen function.
It will close the file and delete the temp file. You can pass a
null to this function.

INPUTS
fh - the filehandler from the DupOpen function.

APG_Seek

SYNOPSIS
APG_Seek (pos)

D2

void APG_Seek (ULONG);

FUNCTION
This function will change the fileposition to the position Pos from
the beginning of the file which is about to be loaded.

INPUTS
pos - the new fileposition.

APG_CalcVolume

SYNOPSIS
newvol = APG_CalcVolume (vol)

D0 D0

UWORD APG_CalcVolume (UBYTE);

FUNCTION
You can use this function if you want to calculate a new volume.
This is very useful, because if you support volume changing you
just have to call this function before you store the volume in the
hardware register and then you will get a new volume which is
calculated relatively to the volume which the user has chosen. This

Libraries.doc 19 / 41

function is safe to call from interrupts.

INPUTS
vol - the volume you want.

OUTPUTS
newvol - the new volume you have to use.

APG_WaitDMA

SYNOPSIS
APG_WaitDMA ()

void APG_WaitDMA (void);

FUNCTION
This function will wait enough time for the audio DMA to set up the
hardware. Use this instead of using raster wait or DBRAs. This
function is safe to call from interrupts.

APG_SendMsg

SYNOPSIS
APG_SendMsg (msg)

D2

void APG_SendMsg (UWORD);

FUNCTION
You have to use this function if you want to send a message to
AccessiblePlayer. Such a message could be a NextModule or a
NextPosition message. See the include file for a list of all the
messages and the values you can send. This function is safe to call
from interrupts.

INPUTS
msg - the message you want to send.

APG_SetTimer

SYNOPSIS
APG_SetTimer ()

void APG_SetTimer (void);

FUNCTION
This function will set the CIA timer to the tempo stored in
APG_Tempo field in the global data area. This is safe to call from
interrupts.

Libraries.doc 20 / 41

APG_NewProcess

SYNOPSIS
process=APG_NewProcess (tags)

D0 A0

APTR APG_NewProcess (APTR);

FUNCTION
This function will make a new process. It will call the
CreateNewProcess() function in the dos.library. See docs about this
function for understanding.

INPUTS
tags - a pointer to a tag list.

OUTPUTS
process - the created process or null for an error.

APG_OpenWindow

SYNOPSIS
window=APG_OpenWindow (struct)
D0 A0

APTR APG_OpenWindow (APTR);

FUNCTION
This function should only be used in your configuration routine. It
will open a window descriped in the structure given. See below and
in the include file for more information. When you make your gadget
structure, you should always count the gadget ID from 1 and
upwards. Do never use gadget IDs 997-999, because they are reserved
numbers.

INPUTS
struct - a pointer to a structure describing the window.

OUTPUTS
window - a private window handler structure or zero for an error.

APG_WaitMsg

SYNOPSIS
msg=APG_WaitMsg (window)
D0 A0

APTR APG_WaitMsg (APTR);

FUNCTION
This function will get your configuration task to sleep if there
aren’t any message in the queue, else it will get the message and

Libraries.doc 21 / 41

handle it if it’s one of the private messages. If not it will
return with a pointer to the message.

INPUTS
window - a pointer to a window structure returned by the

APG_OpenWindow or APG_OpenShowWindow function.

OUTPUTS
msg - a pointer to the next message. This is a standard gadtools

message.

APG_Reply

SYNOPSIS
APG_Reply (msg)

A0

void APG_Reply (APTR);

FUNCTION
This will reply the message returned by the APG_WaitMsg function.

INPUTS
msg - a pointer to the message.

APG_ActivateGadget

SYNOPSIS
APG_ActivateGadget (window, id)

A0 D0

void APG_ActivateGadget (APTR, UWORD);

FUNCTION
This will activate the gadget with the ID number. You should only
call this function with a string or integer gadget.

INPUTS
window - a pointer to a window structure returned by the

APG_OpenWindow or APG_OpenShowWindow function.

id - the gadget ID number.

APG_GetGadAdr

SYNOPSIS
adr=APG_GetGadAdr (window, id)
A0 A0 D0

APTR APG_GetGadAdr (APTR, UWORD);

Libraries.doc 22 / 41

FUNCTION
This function will return a pointer to the intuition gadget
structure with the gadget ID number. You can use this function if
you want to use the structure by yourself, like when you should get
the string from a string gadget.

INPUTS
window - a pointer to a window structure returned by the

APG_OpenWindow or APG_OpenShowWindow function.

id - the gadget ID number.

OUTPUTS
adr - the start address to the gadget structure.

APG_Flash

SYNOPSIS
APG_Flash ()

void APG_Flash (void);

FUNCTION
This function will flash the screen.

APG_AllocChannels

SYNOPSIS
request=APG_AllocChannels ()

D0

APTR APG_AllocChannels (void);

FUNCTION
You have to call this function in your APT_InitPlayer function to
allocate the audio channels. It will try to allocate all four
channels with priority 127, and if it succeeds you will get a
pointer to an IOAudio structure or a null for failure. You may not
use this structure, you have to make a copy of it. Remember to call
the APG_FreeChannels in your APT_EndPlayer function when you are
finished.

OUTPUTS
request - a pointer to a IOAudio request or null for an error.

APG_FreeChannels

SYNOPSIS
APG_FreeChannels ()

void APG_FreeChannels (void);

Libraries.doc 23 / 41

FUNCTION
This function will free the channels and close the audio.device.
You have to call this function in your APT_EndPlayer function.

>>>>>>>>>>>>>>> Functions From Version 2 (Released as 1.1) <<<<<<<<<<<<<<<<

APG_CutSuffix

SYNOPSIS
APG_CutSuffix (buffer)

A0

void APG_CutSuffix (APTR);

FUNCTION
This function will cut off a file extension from the file given in
buffer.

INPUTS
buffer - a pointer to a buffer with the filename. This buffer has

to be at least 2*108 bytes long.

>>>>>>>>>>>>>>> Functions From Version 3 (Released as 1.21) <<<<<<<<<<<<<<<

APG_OpenFile

SYNOPSIS
fh = APG_OpenFile (name)
D0 A0

BPTR APG_OpenFile (APTR);

FUNCTION
This will open the file with the name "name". If the file is
packed, it will unpack it to a temp file and then open this file
instead. Therefore you have to use the APG_CloseFile function.

INPUTS
name - the name of the file you want to open (with path).

OUTPUTS
fh - the filehandler.

APG_CloseFile

SYNOPSIS
APG_CloseFile (fh)

D0

void APG_CloseFile (BPTR);

FUNCTION

Libraries.doc 24 / 41

This will close the file you have opened with the APG_OpenFile
function. If the opened file was packed, this function will delete
the temp file again.

INPUTS
fh - the filehandler returned by the APG_OpenFile function.

APG_FileRequester

SYNOPSIS
return = APG_FileRequester (file, title)

D0 A0 A1

ULONG APG_FileRequester (APTR, APTR);

FUNCTION
This function will popup a filerequester where the user can select
one file.

INPUTS
file - a pointer to a buffer where you want the filename with

path to be stored. This buffer has to be at least 2*108
bytes long.

title - is a pointer to a NULL terminated string.

OUTPUTS
return - is the return value, where 0 means cancel and 1 means ok.

APG_DirRequester

SYNOPSIS
return = APG_DirRequester (path)

D0 A0

ULONG APG_DirRequester (APTR);

FUNCTION
This function will popup a filerequester where the user can select
a path.

INPUTS
path - a pointer to a buffer where you want the path to be

stored. This buffer has to be at least 2*108 bytes long.

OUTPUTS
return - is the return value, where 0 means cancel and 1 means ok.

APG_UpdateGadgets

SYNOPSIS

Libraries.doc 25 / 41

APG_UpdateGadgets (window)
A0

void APG_UpdateGadgets (APTR);

FUNCTION
This function will activate the player configuration gadget update
routine. You can use this, if you for ex. have changed a string
gadget and then want it updated.

INPUTS
window - a pointer to a window structure returned by the

APG_OpenWindow or APG_OpenShowWindow function.

APG_CalcTempo

SYNOPSIS
tempo = APG_CalcTempo (clock)
D0 D0

UBYTE APG_CalcTempo (UWORD);

FUNCTION
If you have a timer clock, like 14187 (PAL), and you want a normal
BPM tempo, you can use this function to calculate it. If we take
the above example, it will return 125 (1773447/14187 (PAL)). This
function is safe to call from interrupt.

INPUTS
clock - the CIA timer clock.

OUTPUTS
tempo - the calculated tempo.

>>>>>>>>>>>>>>> Functions From Version 4 (Released as 1.30) <<<<<<<<<<<<<<<

APG_NewPlaySample

SYNOPSIS
APG_NewPlaySample (period, channel, si)

D1 D2 A2

void APG_NewPlaySample (UWORD, UBYTE, APTR);

FUNCTION
This function is very useful. It will play the sample which is set
up in the SampleInfo structure. It will setup the volume, looping
etc. See include file for more information about the SampleInfo
structure.

INPUTS
period - this is the period the sample has to be played with.

channel - this is the channel the sample should be played in. This

Libraries.doc 26 / 41

can be a number between 0 and 3.

si - this is a pointer to a Sample Info structure.

APG_NotePlayer

SYNOPSIS
APG_NotePlayer ()

void APG_NotePlayer (void);

FUNCTION
You should only use this function in your player routine when you
using noteplayers. This call should be done at the end of your
player routine. It will call the noteplayer in a new software
interrupt.

APG_GetMaxVolume

SYNOPSIS
vol = APG_GetMaxVolume ()
D0

UWORD APG_GetMaxVolume (void);

FUNCTION
This function will return the maximum volume you have to play with.
For the most times, it will just return the same value as in
APG_MaxVolume global data register, but if the module is fading, it
will return the current fading volume. This function is probally
used in NotePlayers. This function is safe to call from interrupts.

OUTPUTS
vol - the maximum volume.

>>>>>>>>>>>>>>> Functions From Version 5 (Released as 1.40) <<<<<<<<<<<<<<<

APG_OpenShowWindow

SYNOPSIS
window = APG_OpenShowWindow (struct)
D0 A0

APTR APG_OpenShowWindow (APTR);

FUNCTION
This function should only be used in your show window routine. It
will open a window descriped in the structure given. See below and
in the include file for more information. When you make your gadget
structure, you should always count the gadget ID from 1 and
upwards.

Libraries.doc 27 / 41

INPUTS
struct - a pointer to a structure describing the window.

OUTPUTS
window - a private window handler structure or zero for an error.

APG_CloseWindow

SYNOPSIS
APG_CloseWindow (window)

A0

void APG_CloseWindow (APTR);

FUNCTION
Do only use this function if you want to close the window opened by
the APG_OpenShowWindow or APG_OpenWindow functions by yourself.

INPUTS
window - the window handler returned by the APG_OpenShowWindow or

APG_OpenWindow.

APG_Sleep

SYNOPSIS
APG_Sleep (window)

A0

void APG_Sleep (APTR);

FUNCTION
If you want to make a sleep pointer to your window you have opened
with the APG_OpenShowWindow or APG_OpenWindow functions, you can
use this function. It will keep track of how many "sleeps" you have
made, but remember for each APG_Sleep call, you have to make a
APG_Unsleep call.

INPUTS
window - the window handler returned by the APG_OpenShowWindow or

APG_OpenWindow.

APG_Unsleep

SYNOPSIS
APG_Unsleep (window)

A0

void APG_Unsleep (APTR);

FUNCTION
This function will unsleep your window again.

Libraries.doc 28 / 41

INPUTS
window - the window handler returned by the APG_OpenShowWindow or

APG_OpenWindow.

APG_LVSetAttrs

SYNOPSIS
APG_LVSetAttrs (window, id, tags)

A0 D0 A1

void APG_LVSetAttrs (APTR, UWORD, APTR);

FUNCTION
If you want to set some attributes in a NEW listviews, you has to
use this function. See the include file to see which tags you can
use.

INPUTS
window - a pointer to a window structure returned by the

APG_OpenWindow or APG_OpenShowWindow function.

id - this is the gadget id number.

tags - this is a pointer to a taglist.

APG_LVGetAttrs

SYNOPSIS
APG_LVGetAttrs (window, id, tags)

A0 D0 A1

void APG_LVGetAttrs (APTR, UWORD, APTR);

FUNCTION
This function will get some attributes from a NEW listview. See the
include file to see which tags you can use.

INPUTS
window - a pointer to a window structure returned by the

APG_OpenWindow or APG_OpenShowWindow function.

id - this is the gadget id number.

tags - this is a pointer to a taglist.

APG_LVChangeColor

SYNOPSIS
APG_LVChangeColor (list, number, color)

A0 D0 D1

Libraries.doc 29 / 41

void APG_LVChangeColor (APTR, UWORD, UBYTE);

FUNCTION
If you want to change the color of some of the elements in your
listview, you has to use this function. You can select between
dark, highlighted or no select. No select means that the user can
select the node in the listview.

INPUTS
list - this is a pointer to your list.

number - this is the element number in your list starting with 0.

color - this byte indicate which color you want to use. 0 is dark
(black), -1 is highlighted (white) and 1 is no select
(blue).

APG_CreateList

SYNOPSIS
list = APG_CreateList ()
D0

APTR APG_CreateList (void);

FUNCTION
This function will create a new empty exec list to use with the
listviews. You has to use the returned pointer in every other list
or listview functions.

OUTPUTS
list - is a pointer to the new created list or NULL for an error.

APG_RemoveList

SYNOPSIS
APG_RemoveList (list)

A0

void APG_RemoveList (APTR);

FUNCTION
This will remove the list from memory. Notice that it will NOT
delete any elements in the list, you have to do that before you
call this function.

INPUTS
list - is a pointer to a list returned by the APG_CreateList()

function.

APG_AddNode

Libraries.doc 30 / 41

SYNOPSIS
success, number = APG_AddNode (list, text, number, size)

D0 D1 A0 A1 D2 D4

ULONG, ULONG APG_AddNode (APTR, APTR, ULONG, ULONG);

FUNCTION
This function will add a node to the list. You can select which
number in the list you will insert the new node at. If you just
want to insert the new node at the bottom in the list, just give -1
as the number. The size is how many bytes you will use after the
exec Node structure. This can be the length of the text or whatever
you want. Remember that the text will be copied after the Node
structure, so the size should be minimum the length of the text.

INPUTS
list - is a pointer to a list returned by the APG_CreateList()

function.

text - is a pointer to a null terminated string.

number - the number to insert the new node at or -1 for the bottom.

size - number of bytes to use as extra bytes in the list.

OUTPUTS
success - 0 if an error occured.

number - the number in the list the new node was inserted at.

APG_DeleteNode

SYNOPSIS
APG_DeleteNode (list, number)

A0 D2

void APG_DeleteNode (APTR, ULONG);

FUNCTION
This function will delete one node in the list. The "number" is the
number in the list starting with 0.

INPUTS
list - is a pointer to a list returned by the APG_CreateList()

function.

number - the number in the list you want to delete.

APG_DeleteList

SYNOPSIS

Libraries.doc 31 / 41

APG_DeleteList (list)
A0

void APG_DeleteList (APTR);

FUNCTION
This will delete all the nodes in the list, but it will not remove
the list from memory. If you want that, call the APG_RemoveList()
function after this function.

INPUTS
list - is a pointer to a list returned by the APG_CreateList()

function.

APG_CopyList

SYNOPSIS
newlist = APG_CopyList (list, size)

D0 A0 D0

APTR APG_CopyList (APTR, ULONG);

FUNCTION
If you want a copy of your list, you can use this function. The
size is the same as in the APG_AddNode() function.

INPUTS
list - is a pointer to a list returned by the APG_CreateList()

function.

size - number of bytes to use as extra bytes in the list.

OUTPUTS
newlist - is a pointer to the new list or null for an error.

APG_ExchangeNodes

SYNOPSIS
APG_ExchangeNodes (list, number1, number2)

A0 D0 D1

void APG_ExchangeNodes (APTR, ULONG, ULONG);

FUNCTION
This function will exchange two nodes in your list. If one of the
numbers you have given can’t be found, nothing will happend.

INPUTS
list - is a pointer to a list returned by the APG_CreateList()

function.

number1 - a node number starting with 0.

Libraries.doc 32 / 41

number2 - a node number starting with 0.

APG_MoveToTop

SYNOPSIS
APG_MoveToTop (list, number)

A0 D0

void APG_MoveToTop (APTR, ULONG);

FUNCTION
This function will move a node to the top of the list. If it can’t
find the node, nothing will happend.

INPUTS
list - is a pointer to a list returned by the APG_CreateList()

function.

number - is the node number starting with 0.

APG_MoveToBottom

SYNOPSIS
APG_MoveToBottom (list, number)

void APG_MoveToBottom (APTR, ULONG);

FUNCTION
This function will move a node to the bottom of the list. If it
can’t find the node, nothing will happend.

INPUTS
list - is a pointer to a list returned by the APG_CreateList()

function.

number - is the node number starting with 0.

APG_FindNode

SYNOPSIS
success, node = APG_FindNode (list, number)

D0 A0 A2 D0

ULONG, APTR APG_FindNode (APTR, ULONG);

FUNCTION
This function will search the list after the node number you have
given and if found, return a pointer to the node structure.

INPUTS
list - is a pointer to a list returned by the APG_CreateList()

Libraries.doc 33 / 41

function.

number - is the node number starting with 0.

OUTPUTS
success - 0 if it couldn’t find the node.

node - is a pointer to the node if it could find it.

APG_FindNodeNumber

SYNOPSIS
number = APG_FindNodeNumber (list, text)

D0 A0 A1

ULONG APG_FindNodeNumber (APTR, APTR);

FUNCTION
This function will return the node number in the list where the
"text" string is. If it can’t find it, -1 will be returned.

INPUTS
list - is a pointer to a list returned by the APG_CreateList()

function.

text - is a pointer to a null terminated string.

OUTPUTS
number - is the node number starting with 0.

APG_StringCompare

SYNOPSIS
result = APG_StringCompare (string1, string2)

D0 A0 A1

UWORD APG_StringCompare (APTR, APTR);

FUNCTION
If you want to compare two strings, this is the function for you.
It will compare them and return a value to tell if the strings are
equal, bigger or less.

INPUTS
string1 - is a pointer to a null terminated string.

string2 - is a pointer to a null terminated string.

OUTPUTS
result - is the result from the test. 0=S1=S2, 1=S1>S2, -1=S1<S2.

>>>>>>>>>>>>>>> Functions From Version 6 (Released as 2.00) <<<<<<<<<<<<<<<

Libraries.doc 34 / 41

APG_GetScreenHd

SYNOPSIS
scrhd = APG_GetScreenHd ()

D0

APTR APG_GetScreenHd (void);

FUNCTION
This function will return the screen handler where APlayer will
open all the windows. This can be used if you want to open your own
window.

OUTPUTS
scrhd - is the screen handler.

APG_GetMemType

SYNOPSIS
memtype = APG_GetMemType ()

D0

ULONG APG_GetMemType (void);

FUNCTION
If your player uses a noteplayer, you can call this function to see
what type of memory the found noteplayer can use. The return value
is the same as the "requirement" values to the AllocMem function.

OUTPUTS
memtype - the memory type.

APG_AllocScopeSignal

SYNOPSIS
scope = APG_AllocScopeSignal ()

D0

APTR APG_AllocScopeSignal (void);

FUNCTION
When you making a scope agent, you has to call this function to
allocate some signals for your task. This function will allocate a
little structure and link it together with other structures. This
is done, so APlayer knows which scope agents has the windows open
and send a signal to them. Your task just have to wait for the
signals bit. When your task wake up from sleep, you can get the
pointer from the APG_ChannelFlags pointer to get the flags for each
channels. This table is 32 bytes long, one byte for each channel.
These bytes are the same as the NPC_Flags byte in the NPChannel
structure, which you can get from the APG_ChannelInfo pointer.

Libraries.doc 35 / 41

OUTPUTS
scope - a pointer to a structure you have to use in other calls.

APG_FreeScopeSignal

SYNOPSIS
APG_FreeScopeSignal (scope)

A0

void APG_FreeScopeSignal (APTR);

FUNCTION
This function will free the node and the signals which was
allocated by the APG_AllocScopeSignal function.

INPUTS
scope - a pointer to the structure you got from the

APG_AllocScopeSignal.

APG_GetScopeSignal

SYNOPSIS
signal = APG_GetScopeSignal (scope)

D0 A0

ULONG APG_GetScopeSignal (APTR);

FUNCTION
This function will return the signals to wait for. These bits can
just or’es together with the other bits you want to wait for.
Remember you also have to wait for a CTRL-C signal, and when you
get it, you has to do the same as when the user closes the window.
This is because if the user has your window open and then quit
APlayer, APlayer will then send a CTRL-C signal to all the tasks.

INPUTS
scope - a pointer to the structure you got from the

APG_AllocScopeSignal.

OUTPUTS
signal - the signal bits you have to wait for.

APG_TestScopeSignal

SYNOPSIS
result = APG_TestScopeSignal (scope, signals)

D0 A0 D0

UWORD APG_TestScopeSignal (APTR, ULONG);

FUNCTION

Libraries.doc 36 / 41

After the wait you has to call this function with the result from
execs Wait() function. This function will then test the signal bits
to see if it’s a scope signal. It can return 3 different values. 0
means it not a scope signal, which means it can be a signal from
your window or a CTRL-C signal. If bit 0 is set, it’s a CHANGE
signal. When you get this signal you have to call a routine, which
get the values from the NPChannel structure and act on them. If bit
1 is set, it’s a VBLANK signal. When you get this signal you can
call a routine, which do anything you want in a VBlank interrupt.
This it’s probally an update of the window. Notice that you can get
both signals at the same time.

INPUTS
scope - a pointer to the structure you got from the

APG_AllocScopeSignal.

signals - the result from the Wait() function.

OUTPUTS
result - A bit result. See above for an description.

APG_DosError

SYNOPSIS
APG_DosError ()

void APG_DosError (void);

FUNCTION
This function will show a dos error requester. This can be used if
you got some error from a dos function and want to show what went
wrong.

APG_ShowRequest

SYNOPSIS
result = APG_ShowRequest (bodytxt, data, gadtxt)

D0 A0 A1 A2

ULONG APG_ShowRequest (APTR, APTR, APTR);

FUNCTION
This function will show a reqtools requester.

INPUTS
bodytxt - this is a pointer to the text you want to show.

data - this is a pointer to a datastream to use with the "%"
codes.

gadtxt - this is a pointer to the text you want in the gadgets.

Libraries.doc 37 / 41

Configuration of libraries

In this section I will explain how to make your configuration window and
how to handle messages etc. First you have to make your own loader routine
in the library INIT function. This loader should just load the
configuration file from the "ENV:APlayer/Players/",
"ENV:APlayer/NotePlayers/" or the "ENV:APlayer/Agents/" directory. The
filename should be the players/noteplayers/agents name with a ".cfg"
extension. Then you make the player/noteplayer/agent as always, but you
should also implement the APT_NewConfig and APT_CfgWindow tags in your tag
list. See above for further explanation of these tags.

When the user selects the config gadget in the player window, your config
routine will be started as a new process with the
players/noteplayers/agents name (starting with an "apc", "anc" or "aac"
prefix). Therefore you have to exit with a zero in D0 and a RTS command.
After some initializing which may not take too long, you have to call the
global function APG_OpenWindow. This will open a window centered on the
screen with the size etc. you have given. It will also make a default menu
which the user can use. This menu will be handled by AccessiblePlayer, so
you don’t have to worry about that. The only thing you should handle, is
the gadgets you have set as extra gadgets. The default gadgets (Save, Use &
Cancel) will also be handled by AccessiblePlayer. It will save the
configuration as raw data.

After you have called the APG_OpenWindow function, you have to start a loop
where you call APG_WaitMsg. This function will get the task to sleep if
there aren’t any messages. If there is a message, it will test to see it’s
one of the private messages, like a menu selection. If so, they will be
handled and your task will go to sleep again. If it isn’t one of the
private messages, it will return a pointer to the message. After you have
got the values you need, you have to reply the message with the APG_Reply
function. If the user have selected the save, use or cancel gadget, you
will get a zero as message pointer. Then you have to exit your task with a
moveq #0,d0 and a RTS. You don’t have to close your window, this will be
done by AccessiblePlayer. If you use the Exit pointer in the structure,
AccessiblePlayer will call this function before it will save the
configuration. In this function you have to get the values from your
string or integer gadgets.

How to make Show windows

In this section I will explain how to make your show window and how to
handle messages etc. You should have the APT_Show and the APT_ShowWindow
tags in your tag list. See above for further explanation of these tags.

When the user selects the show gadget in the player window, your show
window routine will be started as a new process with the
players/noteplayers/agents name (starting with an "aps", "ans" or "aas"
prefix). Therefore you have to exit with a zero in D0 and a RTS command.
After some initializing which may not take too long, you have to call the

Libraries.doc 38 / 41

global function APG_OpenShowWindow. This will open a window centered on the
screen with the size etc. you have given. You have to handle your own
gadgets.

After you have called the APG_OpenShowWindow function, you have to start a
loop where you call APG_WaitMsg. This function will get the task to sleep
if there aren’t any messages. If there is a message, it will return a
pointer to the message. After you have got the values you need, you have to
reply the message with the APG_Reply function. If the user have closed the
window, you will get a zero as message pointer. Then you have to exit your
task with a moveq #0,d0 and a RTS. If you use the Exit pointer,
AccessiblePlayer will call this function before it closes the window.

Note that you can open more than one window if you like.

NewListViews

In AccessiblePlayer, I have coded my own listview routines, so even on
Kickstart 2.0 they will get Kickstart 3.0 look. I have also implemented a
lot of extra features and more will come in the future. If you will use
these listviews in your own windows, like in the config or the show window,
you just set the type to NEWLISTVIEW_KIND, the flags and text to NULL and a
pointer to a tag list. Some of the tags can only be used when you create
the listview, others can both be used when you create it or when you want
to set an attribute. See the include file to see which tags you can do what
on. You need the following IDCMP in your window:

GadgetUp!GadgetDown!IntuiTicks!MouseButtons!MouseMove!RawKey

Here is a description of the different tags:

GA_Disabled (BOOL)

If you want to disable your listview, use this tag. (Create Only)

NLV_Labels (APTR)

This tag should point to a list with all your elements. The list is the
same kind as in the normal gadtools listview, except that the first word
right after the Node structure is a color flag. Do NOT change this manualy,
use the APG_LVChangeColor() function instead. There is a lot of global
functions you can use to generate your list. You can also set this to NULL
if you don’t want any elements in the list. This is the default value.

NLV_Top (UWORD)

This will set the top of the list. The first element in the list is zero
and the second is one etc. Default is zero.

NLV_Selected (UWORD)

If you want to select an element, you can use this tag. If you want to
unselect an element, set the number to -1. This is default. This tag will
be ignored if your listview is read only.

Libraries.doc 39 / 41

NLV_SelectTwice (BOOL8)

You will only get one message each time an user press an element in the
listview. If the user press the selected element you will NOT get a
new message. If you want to get a message every time the user select an
element, even if it’s the selected one, set this to TRUE. This can be used,
if you want to check for doubleclick. Default is FALSE. This tag will be
ignored if your listview is read only.

NLV_CursorKeys (BOOL8)

This tag is one of the most coder friendly ones :) If you set this tag to
TRUE, AccessiblePlayer will automatic implement a cursor key routine. That
means, the user can use the cursor keys to scroll up and down in the
listview, without you do anything. See the guide to see how you can use the
cursor keys. Default is FALSE. This tag will be ignored if your listview is
read only.

NLV_ScrollWidth (UWORD)

If you want to change the width of the scroller bar, you can use this tag.
The default is 16.

NLV_Tabs (APTR)

This is one of the heavy tags. You can use tabs in your elements to set the
text in rows, even if you use a proportional fonts. See for example in the
FSS window. Notice that, if you use this tag, the updating of the listview
will be slower, because it has to clear small pieces for each element in
the visible area in the listview.

This tag has to point to a table with a row description where the elements
are pixel positions. You also have to use some special codes in your
element text. You can use three codes, binary 1, 2 and 3.

3 means that you will change the style in the text. After the code you have
two style numbers. This will be used as parameters to the SetSoftStyle()
function in the graphics library. See the docs to this function for more
information, but remember that the numbers you have should be one bigger
than you will give. This is because you can give zero as parameter and if
you don’t add 1 to the number, Accessibleplayer will think that it’s the
end of the string.

1 means that you want the text that comes AFTER this code to be left
centred.

2 means that the text which comes BEFORE will be right centred.

Notice that is only the text to the next code or to the end of the string
that is influenced by the code. Now in your row destription table you have
to tell Accessibleplayer where it has to set the rows. This table is very
complex. I haven’t made a table that works the first time yet, so read this
every time you make a listview with tabs.

For every 1 code (left centre), the listview routines read one number in
the table. This number is where to end this part of the text. It will start

Libraries.doc 40 / 41

at the current position. If the text is longer, it will be clipped.

For every 2 code (right centre), the listview routines read two numbers in
the table. The first number is where the text has to end and the second is
where the next text string has to start. The text will start at the current
position. If the text is longer, it will be clipped.

When you are finished with the table, you has to end it with a -1.

Did you get it? Well, we have to make an example:

In my FSS window I have the following element text:

dc.b "%d.",2,"%s",1,"%u",2,0

Which will print the text as following:

x. xxxxx x
xx. xxxxxxxxx xx

My row description table have the following numbers:

3*8,4*8,26*8,31*8,31*8,-1

Let’s get through it step by step. In my element text I have a number and
the binary code 2. This means that I want the number to be right centred.
The number has to start at position 0 and end at position 3*8 and the next
string has to start at position 4*8.

The next part is a string with the binary code 1. It will start at position
4*8 (the current position) and end at position 26*8.

Now I have another number and the binary code 2. This will start at
position 26*8 (the current position) and end at position 31*8. The next
string has to start at position 31*8 (therefore the two same numbers).

Now our string is finished, at we have a -1 in our table, so it should
working now. :)

NLV_Font (APTR)

With this tag you can change the font which will be used in the listview.
It have to point to a TextAttr structure. If it can’t open the font, the
Topaz 8 font will be used, which is also the default.

NLV_Function (FPTR)

This tag should point to the function you want to be called when the user
presses on an element. In your function you will in D3 get the node number
in your list the user has pressed starting with 0. This tag will be ignored
if your listview is read only.

NLV_MoveTop (BOOL)

This tag can only be used when you set the attributes. This is also one of
the friendly ones. If you set this to TRUE and you change the selected
element, the listview routines will check to see if the selected one is in

Libraries.doc 41 / 41

the visible area. If it is, nothing will happend, but if it’s not, the top
will be set to the selected element. With this tag, you will always be
sure that the user can see the selected element. This tag will be ignored
if your listview is read only.

>>>>>>>>>>>>>>>>>> Tags From Version 6 (Released as 2.00) <<<<<<<<<<<<<<<<<

NLV_ReadOnly (BOOL)

If you want your listview to be read only, you can use this tag. The bevel
box will be recessed and the user can’t select any item in the list. The
default is FALSE.

	Libraries.doc
	main

